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ABSTRACT
The last several years have brought a growing body of work on en-
suring that recommender systems are in some sense consumer-fair
— that is, they provide comparable quality of service, accuracy of
representation, and other effects to their users. However, there are
many different strategies to make systems more fair and a range
of intervention points. In this position paper, we build on ongo-
ing work to highlight the need for researchers and practitioners
to attend to the details of their application, users, and the fair-
ness objective they aim to achieve, and adopt interventions that
are appropriate to the situation. We argue that consumer fairness
should be a creative endeavor flowing from the particularities of
the specific problem to be solved.

1 PATHS TO CONSUMER FAIRNESS
Fair recommendation is a complex and multi-sided problem [20, 49],
with a significant focus on providing a fair experience to one or
both of two main stakeholders: producers (who provide the items
or services to be suggested) and users (who consume the provided
recommendations) [13]. We are particularly interested in the latter
group, for whom recommender systems (RS) have to offer appealing
items while considering that “the best items for one user may be
different than those for another” [13]. Consumer fairness [12] is
the aspect of fairness concerned with ensuring that the users (or
“consumers”) of a RS are treated fairly in the quantitative and/or
qualitative aspects of their experience. The relevant literature con-
siders several ideas of what it means to be “fair” to consumers,
along with different techniques to measure or attain such fairness;
one particularly common goal is to ensure that certain users or
groups of users do not receive a systematically lower-quality or
less-useful experience than others [22, 35, 41].

This interest mirrors a line of work on specific user audiences.
Ekstrand et al. [22] show recommender performance can differ be-
tween users of different genders and ages. Explorations of children’s
media use [37, 50] reveal that preferred traits in songs and books
vary from childhood to early adulthood, indirectly urging RS work
to treat “children” not as a monolithic entity, but as individuals to
better serve them. Researchers have suggested going beyond tradi-
tional popularity- or collaborative-filtering algorithms that would
inevitably prioritize the majority of the consumers (i.e., adults) to
explicitly consider factors like the readability levels (comprehen-
sion), familiarity with concepts covered in the classroom (learning),
and explainability (engagement and improve task performance),
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if suggestions are to be suitable–and therefore apt for consump-
tion [38, 39, 44, 45, 53]. Literature bringing awareness to autism
[8, 34, 43] emphasizes that RS should account for user-specific sen-
sory aversions or skill limitations of recommended items are to be
compatible with what these users require, and hence useful.

Several concerns from the broader RS literature can also be re-
garded as forms of consumer fairness. Examples include macro-
averaging evaluation metrics by user [24, 52] to assess the experi-
ence of all users instead of emphasizing highly-active users [19, 20]
and providing good results to new users [20].

The works presented thus far share the common goal of pro-
viding effective, often personalized, experiences to all their users.
They do so through a variety of definitions, methods, and points
of intervention (where the RS is changed to advance the goal). Ek-
strand et al. [20, §5] have cataloged many of the existing strategies
and noted some challenges in matching a strategy to specific fair-
ness objectives. Expanding on that argument, our proposition in
this paper is that researchers and practitioners need to select
interventions that are appropriate to the specific fairness
goal(s) and particularities of an application context. More im-
portantly, we hope to see a robust discussion between researchers,
practitioners, and stakeholder representatives from different disci-
plinary perspectives to understand how best to promote RS that are
“good” — in multiple relevant ways — for everyone who uses them.

2 TYPES OF FAIRNESS OBJECTIVES
Numerous fairness objectives have been studied under the banner of
consumer fairness. Perhaps the most well-known is equity of utility:
ensuring that a RS (or other information access system) provides
comparable quality of service to all users or groups of users [e.g.
22, 28, 31, 35, 50], typically measured by online or offline effective
measures such as nDCG or click-through rate. A related objective
is equity of usability: ensuring that people can actually use the
system, either in addition to or independent of considering equity
in the utility of results [6, 27, 34, 43, 47]. Accessibility is a clear
concern here, as a system that does not work with screen readers,
for example, cannot be used as easily by visually-impaired users
[4, 15, 23, 30, 36, 54]. Other works focus on attending to specific
information needs that a particular group of users may have that
are not effectively met by systems more attuned to needs common
among the majority of the population [5, 7, 47].

Looking past the effectiveness and usability of a RS, some con-
sumer fairness work has looked at issues of fair representation or
representational harms [16], in terms of either the RS’s internal rep-
resentation of the user (e.g. avoiding user embeddings that may
lead to stereotyped recommendations [11]) or the recommended
items themselves. One example of this last concern is the objective
of recommendation independence [29]: this goal is satisfied if the
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probability of a particular item being recommended to the user is
independent of their gender or other protected status.

Effective consumer fairness must begin by identifying an objec-
tive to pursue or problem to solve, as the choice of operationaliza-
tion and intervention (§3) follows from the objective [21].

3 INTERVENTION STRATEGIES
Prior work has proposed various strategies to advance one or
more fairness objectives (§2). Here, we mention some salient ones,
grouped by the stage of the RS at which they intervene.

Design interventions. Designing RS to adapt to users in the quest
for consumer fairness involves the use of multiple interfaces that are
matched to users’ needs. For example, Deldjoo et al. [17] proposed
a child-oriented TV/movie recommendation interface for in-home
set-top boxes that incorporated tangible interaction: the child could
hold up a toy truck to get recommendations for shows about trucks.
Another common alternative is to detect the particular group a
user belongs to and adapt RS behavior and/or interface to the cor-
responding group. Practical applications of this strategy include,
upon identification of the grade or skill of the target user, modifying
the types of queries that are recommended Madrazo Azpiazu et al.
[33], showcasing different multi-modal cues to point users towards
suitable spelling suggestions [18], or adapting presented choices to
enable knowledge acquisition [47].

Algorithmic interventions. Modifying recommendation algo-
rithms is common. This means, for instance, including the inter-
user equity objective into the loss function [26, 55, 56], sometimes
through a regularization term [29, 58]. Reranking [31] can also
reduce gaps in utility by post-processing recommendations from
an existing model. These can be applied to many objectives beyond
equity of utility. Penalizing dependence between recommended
items and user attributes [29] is another alternative.

Adversarial learning methods can also help reduce unfairness.
Beutel et al. [11] use a discriminator to learn user embeddings that
are not predictive of sensitive attributes such as race or gender;
more broadly, fair representation learning [32, 59] can be applied
to consumer fairness [57]. There are also many other algorithmic
strategies considered as well, such as changing neighborhoods [14].

Data interventions. Some strategies manipulate the RS’s input
data to improve fairness, e.g. by injecting fake user profiles [46] or
removing spam reviews [48].

Process interventions. Improvements to engineering and quality
assurance processes can be useful for providing consumer fairness.
Regular auditing for violations of fairness objectives [25], through
disaggregated evaluations [9, 35] or other means, identify problems
and help detect regressions on past fairness improvements.

The engineering process is another place to improve a system’s
fairness. Little has been little published on this, but studies that
reveal why a fairness problem occurs may enable engineers and
model owners to identify and prioritize software improvements
that will address the problem, even if they are not directly fair-
ness interventions. For example, if a music recommender performs
poorly for users from a particular region due to lower-quality song
metadata, investing in that data could improve equity of utility.

Marketplace interventions. Consumer fairness can also call for
the development of new RS targeted at under-served groups. This
can be done either by new entrants to the market or existing firms
seeking to shore up their market position. Consider popular sites
like Goodreads and Amazon: the segment of their user base pro-
ducing the most interactions, and hence driving recommendation
algorithms, are adults. In turn, the resulting experience may not
suit children. Some startups are trying to fill this perceived gap
by creating new sites specifically for children; examples include
ABC Mouse [1], BiblioNasium [2], or Pickatale [3]. As for examples
of sites aiming to expand their target audiences, we find Netflix
offering recommendations specific to children and families [42]
or Spotify, which now offers Spotify Kids [51] as an alternative to
better support children.

4 MATCHING OBJECTIVES AND STRATEGIES
Our central proposition in this paper is that the choice of where
in the RS and its sociotechnical context to intervene, and how to
intervene at that point, needs to be well-matched to the specific
fairness objective and details of the application, domain, and users.

Some pairings of strategies and outcomes are better-matched
than others. E.g., auditing differences in utility [9, 22, 35] can iden-
tify unfair utility and provide an empirical starting point for many
potential strategies, including design and process interventions, but
not every intervention strategy is likely a good fit for this objec-
tive. Ekstrand et al. [20] note that useful recommendations in most
domains are not a subtractable good [10] (users do not compete
with each other for good recommendations). The inequity itself is
not the problem, but rather a symptom of the system not providing
some of its users with good recommendations. Training to mini-
mize differences in utility [e.g. 26, 31, 40] can ensure equity, but at
the risk of placing users in competition with each other, sometimes
with significant majority-group utility loss [31]. Positive-sum rather
than zero-sum utility aggregates avoids the competition problem
[55], as do interventions that seek to directly address the causes of
under-serving a segment of the user base [20].

A better-matched pairing involving algorithmic intervention is
Beutel et al. [11]’s use of adversarial learning to remove unwanted
correlations between user embeddings and user group membership
in hopes of producing less stereotypical recommendations.

A single objective may have significantly more complexity and
nuance than is accounted for by simple strategies. For example,
what counts as a good recommendation may differ between groups
[27] and contexts. Here, pursuing an objective such as equity of
utility should consider whether metrics accurately measure utility
across the varied constituencies and contexts in an RS’s usage.

We invite the broad community of people concerned with ensur-
ing fair access to information through RS and related information
access systems to think carefully and interdisciplinarily about the
specific problems to be solved and select appropriate, not just con-
venient or familiar, interventions. Further research is needed to
understand how to implement the various interventions in §3 (and
more not listed) most effectively, and to more thoroughly decom-
pose the problem space of consumer fairness. Such research will
identify when different interventions may or may not be appropri-
ate, and provide evidence-based guidance for future practice.
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